Part Number Hot Search : 
103HC OP484FSZ 371903 CY7C1342 00130 BCM94 BAS21 SQM10
Product Description
Full Text Search
 

To Download MACH210A-24JI Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  publication# 14128 rev. i amendment /0 issue date: may 1995 advanced micro devices mach210a-7/10/12 mach210-12/15/20 mach210aq-12/15/20 high-density ee cmos programmable logic final com'l: -7/10/12/15/20, q-12/15/20 ind: -12/14/18/24 distinctive characteristics 44 pins 64 macrocells 7.5 ns t pd commercial 12 ns t pd industrial 133 mhz f cnt 38 inputs; 210a inputs have built-in pull-up resistors peripheral component interconnect (pci) compliant 32 outputs 64 flip-flops; 2 clock choices 4 pal22v16 blocks with buried macrocells pin-compatible with mach110, mach111, mach211, and mach215 general description the mach210 is a member of amd's high-performance ee cmos mach 2 device family. this device has approximately six times the logic macrocell capability of the popular pal22v10 without loss of speed. the mach210 consists of four pal blocks intercon- nected by a programmable switch matrix. the four pal blocks are essentially pal22v16 structures complete with product-term arrays and programmable macro- cells, including additional buried macrocells. the switch matrix connects the pal blocks to each other and to all input pins, providing a high degree of connectivity between the fully-connected pal blocks. this allows designs to be placed and routed efficiently. the mach210 has two kinds of macrocell: output and buried. the mach210 output macrocell provides regis- tered, latched, or combinatorial outputs with program- mable polarity. if a registered configuration is chosen, the register can be configured as d-type or t-type to help reduce the number of product terms. the register type decision can be made by the designer or by the software. all output macrocells can be connected to an i/o cell. if a buried macrocell is desired, the internal feedback path from the macrocell can be used, which frees up the i/o pin for use as an input. the mach210 has dedicated buried macrocells which, in addition to the capabilities of the output macrocell, also provide input registers or latches for use in synchronizing signals and reducing setup time require- ments.
amd mach210-7/10/12/15/20, q-12/15/20 2 block diagram switch matrix i/o cells macrocells i/o cells macrocells 8 8 8 i/o cells macrocells i/o 0 Ci/o 7 macrocells i/o cells macrocells 8 8 8 8 8 8 8 8 8 i 0 Ci 1, i 3 Ci 4 i/o 8 Ci/o 15 2 i/o 16 Ci/o 23 clk 0 /i 2, clk 1 /i 5 i/o 24 Ci/o 31 14128i-1 44 x 68 and logic array and logic allocator 22 22 22 22 44 x 68 and logic array and logic allocator 4 2 8 44 x 68 and logic array and logic allocator 44 x 68 and logic array and logic allocator 8 2 oe macrocells 8 8 macrocells macrocells oe oe oe
amd 3 mach210-7/10/12/15/20, q-12/15/20 connection diagram top view plcc 14128i-2 i/o 5 i/o 6 i/o 7 i 0 i 1 clk 0 /i 2 i/o 8 i/o 9 gnd i/o 10 i/o 11 i/o 4 i/o 3 i/o 2 i/o 1 i/o 0 gnd v cc i/o 31 i/o 30 i/o 29 i/o 28 i/o 27 i/o 26 i/o 25 i 3 i 4 i/o 24 clk 1 /i 5 gnd i/o 23 i/o 22 i/o 21 i/o 12 i/o 13 i/o 14 v cc gnd i/o 16 i/o 15 i/o 17 i/o 18 i/o 19 i/o 20 7 8 9 10 11 12 13 15 16 14 17 5 61 32 4 4443424140 29 30 31 32 33 34 35 36 37 38 39 18 28 27 26 25 24 23 22 21 19 20 note: pin-compatible with mach110, mach111, mach211, and mach215.
amd mach210-7/10/12/15/20, q-12/15/20 4 connection diagram top view tqfp 1 2 3 4 5 6 7 8 9 10 11 i/o27 i/o26 i/o25 i/o24 clk1/i5 gnd i4 i3 i/o23 i/o22 i/o21 33 32 31 30 29 28 27 26 25 24 23 i/o5 i/o6 i/o7 i0 i1 gnd clk0/i2 i/o8 i/o9 i/o10 i/o11 44 43 42 41 40 39 38 37 36 35 34 i/o4 i/o3 i/o2 i/o1 i/o0 gnd v cc i/o31 i/o30 i/o29 i/o28 12 13 14 15 16 17 18 19 20 21 22 i/o12 i/o13 i/o14 i/o15 v cc gnd i/o16 i/o17 i/o18 i/o19 i/o20 14128i3 note: pin-compatible with mach111 and mach211. pin designations clk/i = clock or input gnd = ground i = input i/o = input/output v cc = supply voltage
amd mach210-7/10/12/15/20, q-12/15/20 (com'l) 5 ordering information commercial products amd programmable logic products for commercial applications are available with several ordering options. the order number (valid combination) is formed by a combination of: operating conditions c = commercial (0 c to +70 c) family type mach = macro array cmos high-speed speed -7 = 7.5 ns t pd -10 = 10 ns t pd -12 = 12 ns t pd -15 = 15 ns t pd -20 = 20 ns t pd mach210a-7 mach210a-10 mach210a-12 mach210-12 mach210-15 mach210-20 mach210aq-12 mach210aq-15 mach210aq-20 mach -7 j c valid combinations the valid combinations table lists configurations planned to be supported in volume for this device. con- sult the local amd sales office to confirm availability of specific valid combinations or to check on newly re- leased combinations. valid combinations optional processing blank = standard processing 210a device number 210 = 64 macrocells, 44 pins 210a = 64 macrocells, 44 pins, input pull-up resistors 210aq = 64 macrocells, 44 pins, input pull-up resistors, quarter power package type j = 44-pin plastic leaded chip carrier (pl 044) v = 44-pin thin quad flat pack (pqt044) jc jc, vc
amd 6 mach210-12/14/18/24 (ind) ordering information industrial products amd programmable logic products for industrial applications are available with several ordering options. the order number (valid combination) is formed by a combination of: operating conditions i = industrial (C40 c to +85 c) family type mach = macro array cmos high-speed speed -12 = 12 ns t pd -14 = 14.5 ns t pd -18 = 18 ns t pd -24 = 24 ns t pd mach210a-12 mach210a-14 mach210-14 mach210-18 mach210-24 mach -12 j i valid combinations the valid combinations table lists configurations planned to be supported in volume for this device. con- sult the local amd sales office to confirm availability of specific valid combinations or to check on newly re- leased combinations. valid combinations optional processing blank = standard processing 210a device number 210 = 64 macrocells, 44 pins 210a = 64 macrocells, 44 pins, input pull-up resistors package type j = 44-pin plastic leaded chip carrier (pl 044) ji
amd 7 mach210-7/10/12/15/20, q-12/15/20 functional description the mach210 consists of four pal blocks connected by a switch matrix. there are 32 i/o pins and 4 dedicated input pins feeding the switch matrix. these signals are distributed to the four pal blocks for efficient design implementation. there are two clock pins that can also be used as dedicated inputs. the mach210a inputs and i/o pins have built-in pull-up resistors. while it is always a good design practice to tie unused pins high, the 210a pull-up resistors provide design security and stability in the event that unused pins are left disconnected. the pal blocks each pal block in the mach210 (figure 1) contains a 64-product-term logic array, a logic allocator, 8 output macrocells, 8 buried macrocells, and 8 i/o cells. the switch matrix feeds each pal block with 22 inputs. this makes the pal block look effectively like an independ- ent pal22v16 with 8 buried macrocells. in addition to the logic product terms, two output enable product terms, an asynchronous reset product term, and an asynchronous preset product term are provided. one of the two output enable product terms can be chosen within each i/o cell in the pal block. all flip-flops within the pal block are initialized together. the switch matrix the mach210 switch matrix is fed by the inputs and feedback signals from the pal blocks. each pal block provides 16 internal feedback signals and 8 i/o feedback signals. the switch matrix distributes these signals back to the pal blocks in an efficient manner that also provides for high performance. the design software automatically configures the switch matrix when fitting a design into the device. the product-term array the mach210 product-term array consists of 64 product terms for logic use, and 4 special-purpose product terms. two of the special-purpose product terms provide programmable output enable; one pro- vides asynchronous reset, and one provides asynchro- nous preset. the logic allocator the logic allocator in the mach210 takes the 64 logic product terms and allocates them to the 16 macrocells as needed. each macrocell can be driven by up to 16 product terms. the design software automatically configures the logic allocator when fitting the design into the device. table 1 illustrates which product term clusters are available to each macrocell within a pal block. refer to figure 1 for cluster and macrocell numbers. table 1. logic allocation available output buried clusters m 0 c 0 , c 1 , c 2 m 1 c 0 , c 1 , c 2 , c 3 m 2 c 1 , c 2 , c 3 , c 4 m 3 c 2 , c 3 , c 4 , c 5 m 4 c 3 , c 4 , c 5 , c 6 m 5 c 4 , c 5 , c 6 , c 7 m 6 c 5 , c 6 , c 7 , c 8 m 7 c 6 , c 7 , c 8 , c 9 m 8 c 7 , c 8 , c 9 , c 10 m 9 c 8 , c 9 , c 10 , c 11 m 10 c 9 , c 10 , c 11 , c 12 m 11 c 10 , c 11 , c 12 , c 13 m 12 c 11 , c 12 , c 13 , c 14 m 13 c 12 , c 13 , c 14 , c 15 m 14 c 13 , c 14 , c 15 m 15 c 14 , c 15 macrocell the macrocell the mach210 has two types of macrocell: output and buried. the output macrocells can be configured as either registered, latched, or combinatorial, with pro- grammable polarity. the macrocell provides internal feedback whether configured with or without the flip- flop. the registers can be configured as d-type or t-type, allowing for product-term optimization. the flip-flops can individually select one of two clock/ gate pins, which are also available as data inputs. the registers are clocked on the low-to-high transition of the clock signal. the latch holds its data when the gate input is high, and is transparent when the gate input is low. the flip-flops can also be asynchronously initial- ized with the common asynchronous reset and preset product terms. the buried macrocells are the same as the output macrocells if they are used for generating logic. in that case, the only thing that distinguishes them from the output macrocells is the fact that there is no i/o cell connection, and the signal is only used internally. the buried macrocell can also be configured as an input register or latch.
amd mach210-7/10/12/15/20, q-12/15/20 8 the i/o cell the i/o cell in the mach210 consists of a three-state output buffer. the three-state buffer can be configured in one of three ways: always enabled, always disabled, or controlled by a product term. if product term control is chosen, one of two product terms may be used to provide the control. the two product terms that are available are common to all i/o cells in a pal block. these choices make it possible to use the macrocell as an output, an input, a bidirectional pin, or a three-state output for use in driving a bus. pci compliance the mach210a-7/10 is fully compliant with the pci local bus specification published by the pci special interest group. the mach210a-7/10's predictable timing ensures compliance with the pci ac specifica- tions independent of the design. on the other hand, in cpld and fpga architectures without predictable timing, pci compliance is dependent upon routing and product term distribution.
amd 9 mach210-7/10/12/15/20, q-12/15/20 14128i-4 0 4 8 12 16 20 24 28 40 32 43 36 0 4 8 12 16 20 24 28 40 32 43 36 8 i/o cell i/o i/o i/o i/o i/o i/o i/o i/o switch matrix output enable output enable asynchronous reset asynchronous preset clk0 clk1 2 2 2 2 2 2 2 2 2 16 0 i/o cell i/o cell i/o cell i/o cell i/o cell i/o cell buried macro cell output macro cell 2 2 2 2 2 2 2 buried macro cell output macro cell output macro cell buried macro cell output macro cell buried macro cell output macro cell buried macro cell output macro cell buried macro cell output macro cell buried macro cell output macro cell buried macro cell i/o cell logic allocator 63 c 0 c 1 c 2 c 3 c 4 c 5 c 6 c 7 c 8 c 9 c 10 c 11 c 12 c 13 c 14 c 15 m 3 m 6 m 5 m 4 m 2 m 1 m 0 m 9 m 8 m 7 m 10 m 11 m 12 m 13 m 14 m 15 figure 1. mach210 pal block
amd 10 mach210a7 (com'l) absolute maximum ratings storage temperature C65 c to +150 c . . . . . . . . . . . ambient temperature with power applied C55 c to +125 c . . . . . . . . . . . . . supply voltage with respect to ground C0.5 v to +7.0 v . . . . . . . . . . . . . dc input voltage C0.5 v to v cc + 0.5 v . . . . . . . . . . . dc output or i/o pin voltage C0.5 v to v cc + 0.5 v . . . . . . . . . . . . static discharge voltage 2001 v . . . . . . . . . . . . . . . . . latchup current (t a = 0 c to +70 c) 200 ma . . . . . . . . . . . . . . . . . . . . stresses above those listed under absolute maximum ratings may cause permanent device failure. functionality at or above these limits is not implied. exposure to absolute maximum ratings for extended periods may affect device reliability. pro- gramming conditions may differ. operating ranges commercial (c) devices temperature (t a ) operating in free air 0 c to +70 c . . . . . . . . . . . . . . . . . . . . . . . supply voltage (v cc ) with respect to ground +4.75 v to +5.25 v . . . . . . . . . . . . operating ranges define those limits between which the func- tionality of the device is guaranteed. dc characteristics over commercial operating ranges unless otherwise specified parameter symbol parameter description test conditions min typ max unit v oh output high voltage i oh = C3.2 ma, v cc = min 2.4 v v in = v ih or v il v ol output low voltage i ol = 16 ma, v cc = min 0.5 v v in = v ih or v il v ih input high voltage guaranteed input logical high 2.0 v voltage for all inputs (note 1) v il input low voltage guaranteed input logical low 0.8 v voltage for all inputs (note 1) i ih input high leakage current v in = 5.25 v, v cc = max (note 2) 10 m a i il input low leakage current v in = 0 v, v cc = max (note 2) C100 m a i ozh off-state output leakage v out = 5.25 v, v cc = max 10 m a current high v in = v ih or v il (note 2) i ozl off-state output leakage v out = 0 v, v cc = max C100 m a current low v in = v ih or v il (note 2) i sc output short-circuit current v out = 0.5 v, v cc = max (note 3) C30 C160 ma i cc supply current v in = 0 v, outputs open (i out = 0 ma) 130 ma v cc = 5.0 v, f = 25 mhz, t a = 25 c (note 4) notes: 1. these are absolute values with respect to device ground and all overshoots due to system or tester noise are included. 2. i/o pin leakage is the worst case of i il and i ozl (or i ih and i ozh ). 3. not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second. v out = 0.5 v has been chosen to avoid test problems caused by tester ground degradation. 4. this parameter is measured with a 16-bit up/down counter pattern. this pattern is programmed in each pal block and capable of being loaded, enabled, and reset.
amd 11 mach210a7 (com'l) capacitance (note 1) parameter symbol parameter description test conditions typ unit c in input capacitance v in = 2.0 v v cc = 5.0 v, t a = 25 c, 6 pf c out output capacitance v out = 2.0 v f = 1 mhz 8 pf switching characteristics over commercial operating ranges parameter symbol parameter description min max unit t pd input, i/o, or feedback to combinatorial output 7.5 ns t s setup time from input, i/o or feedback to clock d-type 5.5 ns t-type 6.5 ns t h register data hold time 0 ns t co clock to output 5ns t wl clock width low 3 ns t wh high 3 ns d-type 100 mhz t-type 91 mhz f max d-type 133 mhz t-type 125 mhz 166.7 mhz t sl setup time from input, i/o, or feedback to gate 5.5 ns t hl latch data hold time 0 ns t go gate to output 6ns t gwl gate width low 3 ns t pdl input, i/o, or feedback to output through 9.5 ns transparent input or output latch t sir input register setup time 2 ns t hir input register hold time 2 ns t ico input register clock to combinatorial output 11 ns t ics input register clock to output register setup d-type 9 ns t-type 10 ns t wicl input register clock width low 3 ns t wich high 3 ns f maxir maximum input register frequency 166.7 mhz t sil input latch setup time 2 ns t hil input latch hold time 2 ns t igo input latch gate to combinatorial output 12 ns t igol input latch gate to output through transparent output latch 14 ns t sll setup time from input, i/o, or feedback through 7.5 ns transparent input latch to output latch gate maximum frequency external feedback internal feedback (f cnt ) no feedback -7
amd 12 mach210a7 (com'l) switching characteristics over commercial operating ranges (continued) parameter symbol parameter description min max unit t igs input latch gate to output latch setup 10 ns t wigl input latch gate width low 3 ns t pdll input, i/o, or feedback to output through transparent 11.5 ns input and output latches t ar asynchronous reset to registered or latched output 12 ns t arw asynchronous reset width 8 ns t arr asynchronous reset recovery time 8 ns t ap asynchronous preset to registered or latched output 12 ns t apw asynchronous preset width 8 ns t apr asynchronous preset recovery time 8 ns t ea input, i/o, or feedback to output enable 7.5 ns t er input, i/o, or feedback to output disable 7.5 ns -7 note: 1. these parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where capacitance may be affected.
amd 13 mach210a-10/12 (com'l) absolute maximum ratings storage temperature C65 c to +150 c . . . . . . . . . . . ambient temperature with power applied -55 c to +125 c . . . . . . . . . . . . . supply voltage with respect to ground -0.5 v to +7.0 v . . . . . . . . . . . . . dc input voltage -0.5 v to v cc + 0.5 v . . . . . . . . . . . dc output or i/o pin voltage -0.5 v to v cc + 0.5 v . . . . . . . . . . . . static discharge voltage 2001 v . . . . . . . . . . . . . . . . . latchup current (t a = 0 c to +70 c) 200 ma . . . . . . stresses above those listed under absolute maximum ratings may cause permanent device failure. functionality at or above these limits is not implied. exposure to absolute maximum ratings for extended periods may affect device reliability. programming conditions may differ. operating ranges commercial (c) devices temperature (t a ) operating in free air 0 c to +70 c . . . . . . . . . . . . . . . . . . . . . . . supply voltage (v cc ) with respect to ground +4.75 v to +5.25 v . . . . . . . . . . . . operating ranges define those limits between which the func tionality of the device is guaranteed. dc characteristics over commercial operating ranges unless otherwise specified parameter symbol parameter description test conditions min typ max unit v oh output high voltage i oh = C3.2 ma, v cc = min 2.4 v v in = v ih or v il v ol output low voltage i ol = 16 ma, v cc = min 0.5 v v in = v ih or v il v ih input high voltage guaranteed input logical high 2.0 v voltage for all inputs (note 1) v il input low voltage guaranteed input logical low 0.8 v voltage for all inputs (note 1) i ih input high leakage current v in = 5.25 v, v cc = max (note 2) 10 m a i il input low leakage current v in = 0 v, v cc = max (note 2) -100 m a i ozh offstate output leakage v out = 5.25 v, v cc = max 10 m a current high v in = v ih or v il (note 2) i ozl offstate output leakage v out = 0 v, v cc = max -100 m a current low v in = v ih or v il (note 2) i sc output shortcircuit current v out = 0.5 v, v cc = max (note 3) -30 -160 ma i cc supply current (typical) v cc = 5v, t a = 25 c, f = 25 mhz 135 ma (note 4) notes: 1. these are absolute values with respect to device ground and all overshoots due to system or tester noise are included. 2. i/o pin leakage is the worst case of i il and i ozl (or i ih and i ozh ). 3. not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second. v out = 0.5 v has been chosen to avoid test problems caused by tester ground degradation. 4. measured with a 16-bit up/down counter pattern. this pattern is programmed in each pal block and is capable of being loaded, enabled, and reset.
amd mach210a-10/12 (com'l) 14 capacitance (note 1) parameter symbol parameter description test conditions typ unit c in input capacitance v in = 2.0 v v cc = 5.0 v, t a = 25 c, 6 pf c out output capacitance v out = 2.0 v f = 1 mhz 8 pf switching characteristics over commercial operating ranges (note 2) parameter symbol parameter description min max min max unit t pd input, i/o, or feedback to combinatorial output (note 3) 10 12 ns d-type 6.5 7 ns t-type 7.5 8 ns t h register data hold time 0 0 ns t co clock to output (note 3) 6 8 ns t wl clock low 5 6 ns t wh width high 5 6 ns d-type 80 66.7 mhz t-type 74 62.5 mhz f max d-type 100 83.3 mhz t-type 91 76.9 mhz 100 83.3 mhz t sl setup time from input, i/o, or feedback to gate 6.5 7 ns t hl latch data hold time 0 0 ns t go gate to output (note 3) 7 10 ns t gwl gate width low 5 6 ns t pdl input, i/o, or feedback to output through transparent input or output latch 12 14 ns t sir input register setup time 2 2 ns t hir input register hold time 2 2 ns t ico input register clock to combinatorial output 13 15 ns t ics input register clock to output register setup d-type 10 12 ns t-type 11 13 ns t wicl input register low 5 6 ns t wich clock width high 5 6 ns f maxir maximum input register frequency 1/(t wicl + t wich ) 100 83.3 mhz t sil input latch setup time 2 2 ns t hil input latch hold time 2 2 ns t igo input latch gate to combinatorial output 14 17 ns t igol input latch gate to output through transparent output latch 16 19 ns t sll setup time from input, i/o, or feedback through transparent input latch to output latch gate 8.5 9 ns t igs input latch gate to output latch setup 11 13 ns maximum frequency (note 1) setup time from input, i/o, or feedback to clock external feedback 1/(t s + t co ) internal feedback (f cnt ) no feedback 1/(t s + t h ) -10 -12 t s
amd 15 mach210a-10/12 (com'l) switching characteristics over commercial operating ranges (note 2) (continued) parameter symbol parameter description min max min max unit t wigl input latch gate width low 5 6 ns t pdll input, i/o, or feedback to output through transparent input and output latches 14 16 ns t ar asynchronous reset to registered or latched output 25 16 ns t arw asynchronous reset width (note 1) 10 12 ns t arr asynchronous reset recovery time (note 1) 10 8 ns t ap asynchronous preset to registered or latched output 15 16 ns t apw asynchronous preset width (note 1) 10 12 ns t apr asynchronous preset recovery time (note 1) 10 8 ns t ea input, i/o, or feedback to output enable (note 3) 10 12 ns t er input, i/o, or feedback to output disable (note 3) 10 12 ns notes: 1. these parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where capacitance may be affected. 2. see switching test circuit, for test conditions. 3. parameters measured with 16 outputs switching. -10 -12
amd mach210a-12/14 (ind) 16 absolute maximum ratings storage temperature C65 c to +150 c . . . . . . . . . . . ambient temperature with power applied -55 c to +125 c . . . . . . . . . . . . . supply voltage with respect to ground -0.5 v to +7.0 v . . . . . . . . . . . . . dc input voltage -0.5 v to v cc + 0.5 v . . . . . . . . . . . dc output or i/o pin voltage -0.5 v to v cc + 0.5 v . . . . . . . . . . . . static discharge voltage 2001 v . . . . . . . . . . . . . . . . . latchup current (t a = 0 c to +70 c) 200 ma . . . . . . stresses above those listed under absolute maximum ratings may cause permanent device failure. functionality at or above these limits is not implied. exposure to absolute maximum ratings for extended periods may affect device reliability. programming conditions may differ. industrial operating ranges temperature (t a ) operating in free air C40 c to +85 c . . . . . . . . . . . . . . . . . . . . . supply voltage (v cc ) with respect to ground +4.5 v to +5.5 v . . . . . . . . . . . . . . operating ranges define those limits between which the func tionality of the device is guaranteed. dc characteristics over commercial operating ranges unless otherwise specified parameter symbol parameter description test conditions min typ max unit v oh output high voltage i oh = C3.2 ma, v cc = min 2.4 v v in = v ih or v il v ol output low voltage i ol = 16 ma, v cc = min 0.5 v v in = v ih or v il v ih input high voltage guaranteed input logical high 2.0 v voltage for all inputs (note 1) v il input low voltage guaranteed input logical low 0.8 v voltage for all inputs (note 1) i ih input high leakage current v in = 5.25 v, v cc = max (note 2) 10 m a i il input low leakage current v in = 0 v, v cc = max (note 2) -100 m a i ozh offstate output leakage v out = 5.25 v, v cc = max 10 m a current high v in = v ih or v il (note 2) i ozl offstate output leakage v out = 0 v, v cc = max -100 m a current low v in = v ih or v il (note 2) i sc output shortcircuit current v out = 0.5 v, v cc = max (note 3) -30 -160 ma i cc supply current (typical) v cc = 5v, t a = 25 c, f = 25 mhz 135 ma (note 4) notes: 1. these are absolute values with respect to device ground and all overshoots due to system or tester noise are included. 2. i/o pin leakage is the worst case of i il and i ozl (or i ih and i ozh ). 3. not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second. v out = 0.5 v has been chosen to avoid test problems caused by tester ground degradation. 4. measured with a 16-bit up/down counter pattern. this pattern is programmed in each pal block and is capable of being loaded, enabled, and reset.
amd 17 mach210a-12/14 (ind) capacitance (note 1) parameter symbol parameter description test conditions typ unit c in input capacitance v in = 2.0 v v cc = 5.0 v, t a = 25 c, 6 pf c out output capacitance v out = 2.0 v f = 1 mhz 8 pf switching characteristics over commercial operating ranges (note 2) parameter symbol parameter description min max min max unit t pd input, i/o, or feedback to combinatorial output (note 3) 12 14.5 ns d-type 8 8.5 ns t-type 9 10 ns t h register data hold time 0 0 ns t co clock to output (note 3) 7.5 10 ns t wl clock low 6 7.5 ns t wh width high 6 7.5 ns d-type 64 53 mhz t-type 59 50 mhz f max d-type 80 61.5 mhz t-type 72.5 57 mhz 80 66.5 mhz t sl setup time from input, i/o, or feedback to gate 8 8.5 ns t hl latch data hold time 0 0 ns t go gate to output (note 3) 8.5 12 ns t gwl gate width low 6 7.5 ns t pdl input, i/o, or feedback to output through transparent input or output latch 14.5 17 ns t sir input register setup time 2.5 2.5 ns t hir input register hold time 3 3 ns t ico input register clock to combinatorial output 16 18 ns t ics input register clock to output register setup d-type 12 14.5 ns t-type 13 16 ns t wicl input register low 6 7.5 ns t wich clock width high 6 7.5 ns f maxir maximum input register frequency 1/(t wicl + t wich ) 80 66.5 mhz t sil input latch setup time 2.5 2.5 ns t hil input latch hold time 3 3 ns t igo input latch gate to combinatorial output 17 20.5 ns t igol input latch gate to output through transparent output latch 19.5 23 ns t sll setup time from input, i/o, or feedback through transparent input latch to output latch gate 10.5 11 ns t igs input latch gate to output latch setup 13.5 16 ns maximum frequency (note 1) setup time from input, i/o, or feedback to clock external feedback 1/(t s + t co ) internal feedback (f cnt ) no feedback 1/(t s + t h ) -12 -14 t s
amd mach210a-12/14 (ind) 18 switching characteristics over commercial operating ranges (note 2) (continued) parameter symbol parameter description min max min max unit t wigl input latch gate width low 6 7.5 ns t pdll input, i/o, or feedback to output through transparent input and output latches 17 19.5 ns t ar asynchronous reset to registered or latched output 19.5 19.5 ns t arw asynchronous reset width (note 1) 12 14.5 ns t arr asynchronous reset recovery time (note 1) 12 10 ns t ap asynchronous preset to registered or latched output 18 19.5 ns t apw asynchronous preset width (note 1) 12 14.5 ns t apr asynchronous preset recovery time (note 1) 12 10 ns t ea input, i/o, or feedback to output enable (note 3) 12 14.5 ns t er input, i/o, or feedback to output disable (note 3) 12 14.5 ns notes: 1. these parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where capacitance may be affected. 2. see switching test circuit, for test conditions. 3. parameters measured with 16 outputs switching. -12 -14
amd 19 mach210-12/15/20 (com'l) absolute maximum ratings storage temperature C65 c to +150 c . . . . . . . . . . . ambient temperature with power applied -55 c to +125 c . . . . . . . . . . . . . supply voltage with respect to ground -0.5 v to +7.0 v . . . . . . . . . . . . . dc input voltage -0.5 v to v cc + 0.5 v . . . . . . . . . . . dc output or i/o pin voltage -0.5 v to v cc + 0.5 v . . . . . . . . . . . . static discharge voltage 2001 v . . . . . . . . . . . . . . . . . latchup current (t a = 0 c to +70 c) 200 ma . . . . . . stresses above those listed under absolute maximum ratings may cause permanent device failure. functionality at or above these limits is not implied. exposure to absolute maximum ratings for extended periods may affect device reliability. programming conditions may differ. operating ranges commercial (c) devices temperature (t a ) operating in free air 0 c to +70 c . . . . . . . . . . . . . . . . . . . . . . . supply voltage (v cc ) with respect to ground +4.75 v to +5.25 v . . . . . . . . . . . . operating ranges define those limits between which the func tionality of the device is guaranteed. dc characteristics over commercial operating ranges unless otherwise specified parameter symbol parameter description test conditions min typ max unit v oh output high voltage i oh = C3.2 ma, v cc = min 2.4 v v in = v ih or v il v ol output low voltage i ol = 16 ma, v cc = min 0.5 v v in = v ih or v il v ih input high voltage guaranteed input logical high 2.0 v voltage for all inputs (note 1) v il input low voltage guaranteed input logical low 0.8 v voltage for all inputs (note 1) i ih input high leakage current v in = 5.25 v, v cc = max (note 2) 10 m a i il input low leakage current v in = 0 v, v cc = max (note 2) -10 m a i ozh offstate output leakage v out = 5.25 v, v cc = max 10 m a current high v in = v ih or v il (note 2) i ozl offstate output leakage v out = 0 v, v cc = max -10 m a current low v in = v ih or v il (note 2) i sc output shortcircuit current v out = 0.5 v, v cc = max (note 3) -30 -160 ma i cc supply current (typical) v cc = 5v, t a = 25 c, f = 25 mhz 120 ma (note 4) notes: 1. these are absolute values with respect to device ground and all overshoots due to system or tester noise are included. 2. i/o pin leakage is the worst case of i il and i ozl (or i ih and i ozh ). 3. not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second. v out = 0.5 v has been chosen to avoid test problems caused by tester ground degradation. 4. measured with a 16-bit up/down counter pattern. this pattern is programmed in each pal block and is capable of being loaded, enabled, and reset.
amd mach210-12/15/20 (com'l) 20 capacitance (note 1) parameter symbol parameter description test conditions typ unit c in input capacitance v in = 2.0 v v cc = 5.0 v, t a = 25 c, 6 pf c out output capacitance v out = 2.0 v f = 1 mhz 8 pf switching characteristics over commercial operating ranges (note 2) parameter symbol parameter description min max min max min max unit t pd input, i/o, or feedback to combinatorial output (note 3) 12 15 20 ns d-type 7 10 13 ns t-type 8 11 14 ns t h register data hold time 0 0 0 ns t co clock to output (note 3) 8 10 12 ns t wl clock low 6 6 8 ns t wh width high 6 6 8 ns d-type 66.7 50 40 mhz t-type 62.5 47.6 38.5 mhz f max d-type 83.3 66.6 50 mhz t-type 76.9 62.5 47.6 mhz 83.3 83.3 62.5 mhz t sl setup time from input, i/o, or feedback to gate 7 10 13 ns t hl latch data hold time 0 0 0 ns t go gate to output (note 3) 10 11 12 ns t gwl gate width low 6 6 8 ns t pdl input, i/o, or feedback to output through transparent input or output latch 14 17 22 ns t sir input register setup time 2 2 2 ns t hir input register hold time 2 2.5 3 ns t ico input register clock to combinatorial output 15 18 23 ns t ics input register clock to output register setup 12 15 20 ns 13 16 21 ns t wicl input register low 6 6 8 ns t wich clock width high 6 6 8 ns f maxir maximum input register frequency 1/(t wicl + t wich ) 83.3 83.3 62.5 mhz t sil input latch setup time 2 2 2 ns t hil input latch hold time 2 2.5 3 ns t igo input latch gate to combinatorial output 17 20 25 ns t igol input latch gate to output through transparent output latch 19 22 27 ns t sll setup time from input, i/o, or feedback through transparent input latch to output latch gate 9 12 15 ns t igs input latch gate to output latch setup 13 16 21 ns maximum frequency (note 1) setup time from input, i/o, or feedback to clock external feedback 1/(t s + t co ) internal feedback (f cnt ) no feedback 1/(t wl + t wh ) -15 -20 d-type t-type t s -12
amd 21 mach210-12/15/20 (com'l) switching characteristics over commercial operating ranges (note 2) (continued) parameter symbol parameter description min max min max min max unit t wigl input latch gate width low 6 6 8 ns t pdll input, i/o, or feedback to output through transparent input and output latches 16 19 24 ns t ar asynchronous reset to registered or latched output 16 20 25 ns t arw asynchronous reset width (note 1) 12 15 20 ns t arr asynchronous reset recovery time (note 1) 8 10 15 ns t ap asynchronous preset to registered or latched output 16 20 25 ns t apw asynchronous preset width (note 1) 12 15 20 ns t apr asynchronous preset recovery time (note 1) 8 10 15 ns t ea input, i/o, or feedback to output enable (note 3) 12 15 20 ns t er input, i/o, or feedback to output disable (note 3) 12 15 20 ns notes: 1. these parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where capacitance may be affected. 2. see switching test circuit, for test conditions. 3. parameters measured with 16 outputs switching. -15 -20 -12
amd mach210-14/18/24 (ind) 22 absolute maximum ratings storage temperature C65 c to +150 c . . . . . . . . . . . ambient temperature with power applied -55 c to +125 c . . . . . . . . . . . . . supply voltage with respect to ground -0.5 v to +7.0 v . . . . . . . . . . . . . dc input voltage -0.5 v to v cc + 0.5 v . . . . . . . . . . . . dc output or i/o pin voltage C0.5 v to v cc + 0.5 v . . . . . . . . . . . . . . . . static discharge voltage 2001 v . . . . . . . . . . . . . . . . latchup current (t a = C40 c to +85 c) 200 ma . . . . . . . . . . . . . . . . . . stresses above those listed under absolute maximum ratings may cause permanent device failure. functionality at or above these limits is not implied. exposure to absolute maximum ratings for extended periods may affect device reliability. programming conditions may differ. industrial operating ranges ambient temperature (t a ) operating in free air C40 c to +85 c . . . . . . . . . . . . supply voltage (v cc ) with respect to ground +4.5 v to +5.5 v . . . . . . . . . . operating ranges define those limits between which the func- tionality of the device is guaranteed. dc characteristics over industrial operating ranges unless otherwise specified parameter symbol parameter description test conditions min typ max unit v oh output high voltage i oh = C3.2 ma, v cc = min 2.4 v v in = v ih or v il v ol output low voltage i ol = 16 ma, v cc = min 0.5 v v in = v ih or v il v ih input high voltage guaranteed input logical high 2.0 v voltage for all inputs (note 1) v il input low voltage guaranteed input logical low 0.8 v voltage for all inputs (note 1) i ih input high leakage current v in = 5.25 v, v cc = max (note 2) 10 m a i il input low leakage current v in = 0 v, v cc = max (note 2) C10 m a i ozh off-state output leakage v out = 5.25 v, v cc = max 10 m a current high v in = v ih or v il (note 2) i ozl off-state output leakage v out = 0 v, v cc = max C10 m a current low v in = v ih or v il (note 2) i sc output short-circuit current v out = 0.5 v, v cc = max (note 3) C30 C160 ma supply current (typical) v cc = 5 v, t a = 25 c, f = 25 mhz (note 4) 120 ma notes: 1. these are absolute values with respect to device ground and all overshoots due to system and/or tester noise are included. 2. i/o pin leakage is the worst case of i il and i ozl (or i ih and i ozh ). 3. not more than one output should be shorted at a time. duration of the short-circuit should not exceed one second. v out = 0.5 v has been chosen to avoid test problems caused by tester ground degradation. 4. measured with a 16-bit up/down counter pattern. this pattern is programmed in each pal block and is capable of being loaded, enabled, and reset. i cc
amd 23 mach210-14/18/24 (ind) capacitance (note 1) parameter symbol parameter description test conditions typ unit c in input capacitance v in = 2.0 v v cc = 5.0 v, t a = 25 c, 6 pf c out output capacitance v out = 2.0 v f = 1 mhz 8 pf switching characteristics over industrial operating ranges (note 2) parameter symbol parameter description min max min max min max unit t pd input, i/o, or feedback to combinatorial output 14.5 18 24 ns (note 3) d-type 8.5 12 16 ns t-type 10 13.5 17 ns t h register data hold time 0 0 0 ns t co clock to output (note 3) 10 12 14.5 ns t wl clock low 7.5 7.5 10 ns t wh width high 7.5 7.5 10 ns d-type 53 40 32 mhz t-type 50 38 30.5 mhz f max d-type 61.5 53 38 mhz t-type 57 44 34.5 mhz 66.5 66.5 50 mhz t sl setup time from input, i/o, or feedback to gate 8.5 12 16 ns t hl latch data hold time 0 0 0 ns t go gate to output (note 3) 12 13.5 14.5 ns t gwl gate width low 7.5 7.5 10 ns t pdl input, i/o, or feedback to output through 17 20.5 26.5 ns transparent input or output latch t sir input register setup time 2.5 2.5 2.5 ns t hir input register hold time 3 3.5 4 ns t ico input register clock to combinatorial output 18 22 28 ns t ics input register clock to output register setup 14.5 18 24 ns 16 19.5 25.5 ns t wicl input register low 7.5 7.5 10 ns t wich clock width high 7.5 7.5 10 ns f maxir maximum input register frequency 1/(t wicl + t wich ) 66.5 66.5 50 mhz t sil input latch setup time 2.5 2.5 2.5 ns t hil input latch hold time 3 3.5 4 ns t igo input latch gate to combinatorial output 20.5 24 30 ns t igol input latch gate to output through transparent 23 26.5 32.5 ns output latch t sll setup time from input, i/o, or feedback through 11 14.5 18 ns transparent input latch to output latch gate t igs input latch gate to output latch setup 16 19.5 25.5 ns t wigl input latch gate width low 7.5 7.5 10 ns t pdll input, i/o, or feedback to output through transparent 19.5 23 29 ns input and output latches maximum frequency (note 1) setup time from input, i/o, or feedback to clock external feedback 1/(t s + t co ) internal feedback (f cnt ) no feedback 1/(t wl + t wh ) -18 -24 d-type t-type t s -14
amd mach210-14/18/24 (ind) 24 switching characteristics over industrial operating ranges (note 2) (continued) parameter symbol parameter description min max min max min max unit t ar asynchronous reset to registered or latched output 19.5 24 30 ns t arw asynchronous reset width (note 1) 14.5 18 24 ns t arr asynchronous reset recovery time (note 1) 10 12 18 ns t ap asynchronous preset to registered or latched output 19.5 24 30 ns t apw asynchronous preset width (note 1) 14.5 18 24 ns t apr asynchronous preset recovery time (note 1) 10 12 18 ns t ea input, i/o, or feedback to output enable (note 3) 14.5 18 24 ns t er input, i/o, or feedback to output disable (note 3) 14.5 18 24 ns notes: 1. these parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where capacitance may be affected. 2. see switching test circuit, for test conditions. 3. parameters measured with 16 outputs switching. -18 -24 -14
amd 25 mach210aq-12 (com'l) absolute maximum ratings storage temperature C65 c to +150 c . . . . . . . . . . . ambient temperature with power applied -55 c to +125 c . . . . . . . . . . . . . supply voltage with respect to ground -0.5 v to +7.0 v . . . . . . . . . . . . . dc input voltage -0.5 v to v cc + 0.5 v . . . . . . . . . . . dc output or i/o pin voltage -0.5 v to v cc + 0.5 v . . . . . . . . . . . . static discharge voltage 2001 v . . . . . . . . . . . . . . . . . latchup current (t a = 0 c to +70 c) 200 ma . . . . . . stresses above those listed under absolute maximum ratings may cause permanent device failure. functionality at or above these limits is not implied. exposure to absolute maximum ratings for extended periods may affect device reliability. programming conditions may differ. operating ranges commercial (c) devices temperature (t a ) operating in free air 0 c to +70 c . . . . . . . . . . . . . . . . . . . . . . . supply voltage (v cc ) with respect to ground +4.75 v to +5.25 v . . . . . . . . . . . . operating ranges define those limits between which the func tionality of the device is guaranteed. dc characteristics over commercial operating ranges unless otherwise specified parameter symbol parameter description test conditions min typ max unit v oh output high voltage i oh = C3.2 ma, v cc = min 2.4 v v in = v ih or v il v ol output low voltage i ol = 16 ma, v cc = min 0.5 v v in = v ih or v il v ih input high voltage guaranteed input logical high 2.0 v voltage for all inputs (note 1) v il input low voltage guaranteed input logical low 0.8 v voltage for all inputs (note 1) i ih input high leakage current v in = 5.25 v, v cc = max (note 2) 10 m a i il input low leakage current v in = 0 v, v cc = max (note 2) -100 m a i ozh offstate output leakage v out = 5.25 v, v cc = max 10 m a current high v in = v ih or v il (note 2) i ozl offstate output leakage v out = 0 v, v cc = max -100 m a current low v in = v ih or v il (note 2) i sc output shortcircuit current v out = 0.5 v, v cc = max (note 3) -30 -160 ma i cc supply current (typical) v cc = 5 v, t a = 25 c, f = 25 mhz 45 ma (note 4) notes: 1. these are absolute values with respect to device ground and all overshoots due to system or tester noise are included. 2. i/o pin leakage is the worst case of i il and i ozl (or i ih and i ozh ). 3. not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second. v out = 0.5 v has been chosen to avoid test problems caused by tester ground degradation. 4. measured with a 16-bit up/down counter pattern. this pattern is programmed in each pal block and is capable of being loaded, enabled, and reset.
amd mach210aq-12 (com'l) 26 capacitance (note 1) parameter symbol parameter description test conditions typ unit c in input capacitance v in = 2.0 v v cc = 5.0 v, t a = 25 c, 6 pf c out output capacitance v out = 2.0 v f = 1 mhz 8 pf switching characteristics over commercial operating ranges (note 2) parameter symbol parameter description min max unit t pd input, i/o, or feedback to combinatorial output 12 ns d-type 12 ns t-type 13 ns t h register data hold time 0 ns t co clock to output 6ns t wl clock low 6 ns t wh width high 6 ns d-type 55.6 mhz t-type 52.6 mhz f max d-type 83.3 mhz t-type 76.9 mhz 83.3 mhz t sl setup time from input, i/o, or feedback to gate 12 ns t hl latch data hold time 0 ns t go gate to output 7ns t gwl gate width low 6 ns t pdl input, i/o, or feedback to output through transparent input or output latch 14 ns t sir input register setup time 2 ns t hir input register hold time 2.5 ns t ico input register clock to combinatorial output 17 ns t ics input register clock to output register setup d-type 15 ns t-type 16 ns t wicl input register low 6 ns t wich clock width high 6 ns f maxir maximum input register frequency 83.3 mhz t sil input latch setup time 2 ns t hil input latch hold time 2.5 ns t igo input latch gate to combinatorial output 19 ns t igol input latch gate to output through transparent output latch 20 ns t sll setup time from input, i/o, or feedback through transparent input latch to output latch gate 13 ns t igs input latch gate to output latch setup 16 ns maximum frequency (note 1) setup time from input, i/o, or feedback to clock external feedback internal feedback (f cnt ) -12 t s no feedback
amd 27 mach210aq-12 (com'l) switching characteristics over commercial operating ranges (note 2) (continued) parameter symbol parameter description min max unit t wigl input latch gate width low 6 ns t pdll input, i/o, or feedback to output through transparent input and output latches 18 ns t ar asynchronous reset to registered or latched output 24 ns t arw asynchronous reset width (note 1) 19 ns t arr asynchronous reset recovery time (note 1) 19 ns t ap asynchronous preset to registered or latched output 24 ns t apw asynchronous preset width (note 1) 19 ns t apr asynchronous preset recovery time (note 1) 19 ns t ea input, i/o, or feedback to output enable 12 ns t er input, i/o, or feedback to output disable 12 ns notes: 1. these parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where capacitance may be affected. 2. see switching test circuit, for test conditions. -12
amd mach210aq-15/20 (com'l) 28 absolute maximum ratings storage temperature C65 c to +150 c . . . . . . . . . . . ambient temperature with power applied -55 c to +125 c . . . . . . . . . . . . . supply voltage with respect to ground -0.5 v to +7.0 v . . . . . . . . . . . . . dc input voltage -0.5 v to v cc + 0.5 v . . . . . . . . . . . dc output or i/o pin voltage -0.5 v to v cc + 0.5 v . . . . . . . . . . . . static discharge voltage 2001 v . . . . . . . . . . . . . . . . . latchup current (t a = 0 c to +70 c) 200 ma . . . . . . stresses above those listed under absolute maximum ratings may cause permanent device failure. functionality at or above these limits is not implied. exposure to absolute maximum ratings for extended periods may affect device reliability. programming conditions may differ. operating ranges commercial (c) devices temperature (t a ) operating in free air 0 c to +70 c . . . . . . . . . . . . . . . . . . . . . . . supply voltage (v cc ) with respect to ground +4.75 v to +5.25 v . . . . . . . . . . . . operating ranges define those limits between which the func tionality of the device is guaranteed. dc characteristics over commercial operating ranges unless otherwise specified parameter symbol parameter description test conditions min typ max unit v oh output high voltage i oh = C3.2 ma, v cc = min 2.4 v v in = v ih or v il v ol output low voltage i ol = 16 ma, v cc = min 0.5 v v in = v ih or v il v ih input high voltage guaranteed input logical high 2.0 v voltage for all inputs (note 1) v il input low voltage guaranteed input logical low 0.8 v voltage for all inputs (note 1) i ih input high leakage current v in = 5.25 v, v cc = max (note 2) 10 m a i il input low leakage current v in = 0 v, v cc = max (note 2) -100 m a i ozh offstate output leakage v out = 5.25 v, v cc = max 10 m a current high v in = v ih or v il (note 2) i ozl offstate output leakage v out = 0 v, v cc = max -100 m a current low v in = v ih or v il (note 2) i sc output shortcircuit current v out = 0.5 v, v cc = max (note 3) -30 -160 ma i cc supply current (typical) v cc = 5v, t a = 25 c, f = 25 mhz 45 ma (note 4) notes: 1. these are absolute values with respect to device ground and all overshoots due to system or tester noise are included. 2. i/o pin leakage is the worst case of i il and i ozl (or i ih and i ozh ). 3. not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second. v out = 0.5 v has been chosen to avoid test problems caused by tester ground degradation. 4. measured with a 16-bit up/down counter pattern. this pattern is programmed in each pal block and is capable of being loaded, enabled, and reset.
amd 29 mach210aq-15/20 (com'l) capacitance (note 1) parameter symbol parameter description test conditions typ unit c in input capacitance v in = 2.0 v v cc = 5.0 v, t a = 25 c, 6 pf c out output capacitance v out = 2.0 v f = 1 mhz 8 pf switching characteristics over commercial operating ranges (note 2) parameter symbol parameter description min max min max unit t pd input, i/o, or feedback to combinatorial output (note 3) 15 20 ns d-type 13 17 ns t-type 14 18 ns t h register data hold time 0 0 ns t co clock to output (note 3) 7 8 ns t wl clock low 6 8 ns t wh width high 6 8 ns d-type 50 40 mhz t-type 47.6 38.4 mhz f max d-type 58.8 45.4 mhz t-type 55.5 43.4 mhz d-type 76.9 58.8 mhz t-type 71.4 55.5 mhz t sl setup time from input, i/o, or feedback to gate 13 17 ns t hl latch data hold time 0 0 ns t go gate to output (note 3) 8 8 ns t gwl gate width low 6 8 ns t pdl input, i/o, or feedback to output through transparent input or output latch 17 22 ns t sir input register setup time 2 2 ns t hir input register hold time 2.5 3 ns t ico input register clock to combinatorial output 18 23 ns t ics input register clock to output register setup 17 22 ns 18 23 ns t wicl input register low 6 8 ns t wich clock width high 6 8 ns f maxir maximum input register frequency 1/(t wicl + t wich ) 83.3 62.5 mhz t sil input latch setup time 2 2 ns t hil input latch hold time 2.5 3 ns t igo input latch gate to combinatorial output 20 25 ns t igol input latch gate to output through transparent output latch 22 27 ns t sll setup time from input, i/o, or feedback through transparent input latch to output latch gate 15 19 ns t igs input latch gate to output latch setup 18 23 ns maximum frequency (note 1) setup time from input, i/o, or feedback to clock external feedback 1/(t s + t co ) internal feedback (f cnt ) no feedback 1/(t s + t h ) -15 -20 d-type t-type t s
amd mach210aq-15/20 (com'l) 30 switching characteristics over commercial operating ranges (note 2) (continued) parameter symbol parameter description min max min max unit t wigl input latch gate width low 6 8 ns t pdll input, i/o, or feedback to output through transparent input and output latches 19 24 ns t ar asynchronous reset to registered or latched output 25 30 ns t arw asynchronous reset width (note 1) 20 25 ns t arr asynchronous reset recovery time (note 1) 20 25 ns t ap asynchronous preset to registered or latched output 25 30 ns t apw asynchronous preset width (note 1) 20 25 ns t apr asynchronous preset recovery time (note 1) 20 25 ns t ea input, i/o, or feedback to output enable (note 3) 15 20 ns t er input, i/o, or feedback to output disable (note 3) 15 20 ns notes: 1. these parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where capacitance may be affected. 2. see switching test circuit, for test conditions. 3. parameters measured with 16 outputs switching. -15 -20
amd 31 mach210aq-18/24 (ind) absolute maximum ratings storage temperature C65 c to +150 c . . . . . . . . . . . ambient temperature with power applied -55 c to +125 c . . . . . . . . . . . . . supply voltage with respect to ground -0.5 v to +7.0 v . . . . . . . . . . . . . dc input voltage -0.5 v to v cc + 0.5 v . . . . . . . . . . . . . dc output or i/o pin voltage C0.5 v to v cc + 0.5 v . . . . . . . . . . . . . . . . static discharge voltage 2001 v . . . . . . . . . . . . . . . . latchup current (t a = C40 c to +85 c) 200 ma . . . . . . . . . . . . . . . . . . stresses above those listed under absolute maximum ratings may cause permanent device failure. functionality at or above these limits is not implied. exposure to absolute maximum ratings for extended periods may affect device reliability. programming conditions may differ. industrial operating ranges ambient temperature (t a ) operating in free air C40 c to +85 c . . . . . . . . . . . . supply voltage (v cc ) with respect to ground +4.5 v to +5.5 v . . . . . . . . . . operating ranges define those limits between which the func- tionality of the device is guaranteed. dc characteristics over industrial operating ranges unless otherwise specified parameter symbol parameter description test conditions min typ max unit v oh output high voltage i oh = C3.2 ma, v cc = min 2.4 v v in = v ih or v il v ol output low voltage i ol = 16 ma, v cc = min 0.5 v v in = v ih or v il v ih input high voltage guaranteed input logical high 2.0 v voltage for all inputs (note 1) v il input low voltage guaranteed input logical low 0.8 v voltage for all inputs (note 1) i ih input high leakage current v in = 5.25 v, v cc = max (note 2) 10 m a i il input low leakage current v in = 0 v, v cc = max (note 2) C100 m a i ozh off-state output leakage v out = 5.25 v, v cc = max 10 m a current high v in = v ih or v il (note 2) i ozl off-state output leakage v out = 0 v, v cc = max C100 m a current low v in = v ih or v il (note 2) i sc output short-circuit current v out = 0.5 v, v cc = max (note 3) C30 C160 ma i cc supply current (typical) v cc = 5 v, t a = 25 c, f = 25 mhz (note 4) 45 ma notes: 1. these are absolute values with respect to device ground and all overshoots due to system and/or tester noise are included. 2. i/o pin leakage is the worst case of i il and i ozl (or i ih and i ozh ). 3. not more than one output should be shorted at a time. duration of the short-circuit should not exceed one second. v out = 0.5 v has been chosen to avoid test problems caused by tester ground degradation. 4. measured with a 16-bit up/down counter pattern. this pattern is programmed in each pal block and is capable of being loaded, enabled, and reset.
amd mach210aq-18/24 (ind) 32 capacitance (note 1) parameter symbol parameter description test conditions typ unit c in input capacitance v in = 2.0 v v cc = 5.0 v, t a = 25 c, 6 pf c out output capacitance v out = 2.0 v f = 1 mhz 8 pf switching characteristics over industrial operating ranges (note 2) parameter symbol parameter description min max min max unit t pd input, i/o, or feedback to combinatorial output 18 24 ns (note 3) d-type 16 20.5 ns t-type 17 22 ns t h register data hold time 0 0 ns t co clock to output (note 3) 8.5 10 ns t wl clock low 7.5 10 ns t wh width high 7.5 10 ns d-type 40 32 mhz t-type 38 30.5 mhz f max d-type 47 36 mhz t-type 44 34.5 mhz d-type 61.5 47 mhz t-type 57 47 mhz t sl setup time from input, i/o, or feedback to gate 16 20.5 ns t hl latch data hold time 0 0 ns t go gate to output (note 3) 10 10 ns t gwl gate width low 7.5 10 ns t pdl input, i/o, or feedback to output through 20.5 26.5 ns transparent input or output latch t sir input register setup time 2.5 2.5 ns t hir input register hold time 3.5 4 ns t ico input register clock to combinatorial output 22 28 ns t ics input register clock to output register setup 20.5 26.5 ns 22 28 ns t wicl input register low 7.5 10 ns t wich clock width high 7.5 10 ns f maxir maximum input register frequency 1/(t wicl + t wich ) 66.5 50 mhz t sil input latch setup time 2.5 2.5 ns t hil input latch hold time 3.5 4 ns t igo input latch gate to combinatorial output 24 30 ns t igol input latch gate to output through transparent 26.5 32.5 ns output latch t sll setup time from input, i/o, or feedback through 18 23 ns transparent input latch to output latch gate t igs input latch gate to output latch setup 22 28 ns t wigl input latch gate width low 7.5 10 ns t pdll input, i/o, or feedback to output through transparent 23 29 ns input and output latches maximum frequency (note 1) setup time from input, i/o, or feedback to clock external feedback 1/(t s + t co ) internal feedback (f cnt ) no feedback 1/(t s + t h ) -18 -24 d-type t-type t s
amd 33 mach210aq-18/24 (ind) switching characteristics over industrial operating ranges (note 2) (continued) parameter symbol parameter description min max min max unit t ar asynchronous reset to registered or latched output 30 36 ns t arw asynchronous reset width (note 1) 24 30 ns t arr asynchronous reset recovery time (note 1) 24 30 ns t ap asynchronous preset to registered or latched output 30 36 ns t apw asynchronous preset width (note 1) 24 30 ns t apr asynchronous preset recovery time (note 1) 24 30 ns t ea input, i/o, or feedback to output enable (note 3) 18 24 ns t er input, i/o, or feedback to output disable (note 3) 18 24 ns notes: 1. these parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where capacitance may be affected. 2. see switching test circuit, for test conditions. 3. parameters measured with 16 outputs switching. -18 -24
amd 34 mach210-7/10/12/15/20, q-12/15/20 typical current vs. voltage (i-v) characteristics v cc = 5.0 v, t a = 25 c input 14128i-6 20 C40 C60 C80 C2 C1 123 output, high i i (ma) v i (v) C20 14128i-5 i oh (ma) v oh (v) 25 C50 C75 C100 C3 C2 C1 123 C25 C125 C150 45 45 C100 C0.8 C0.6 C0.4 .2 C0.2 C1.0 output, low .4 .6 1.0 .8 60 40 20 C20 C40 80 C60 C80 i ol (ma) v ol (v) 14128i-7
amd mach210-7/10/12/15/20, q-12/15/20 35 typical i cc characteristics v cc = 5 v, t a = 25 c 14128i8 150 125 100 75 50 25 0 0 102030 40 506070 80 90100 mach210a mach210 mach210aq i cc (ma) frequency (mhz) the selected typical pattern is a 16-bit up/down counter. this pattern is programmed in each pal block and is capable of being loaded, enabled, and reset. maximum frequency shown uses internal feedback and a d-type register.
amd 36 mach210-7/10/12/15/20, q-12/15/20 typical thermal characteristics measured at 25 c ambient. these parameters are not tested. parameter symbol parameter description tqfp plcc unit q jc thermal impedance, junction to case 11.3 15 c/w q ja thermal impedance, junction to ambient 41 40 c/w q jma thermal impedance, junction to 200 lfpm air 35 36 c/w 400 lfpm air 33.7 33 c/w 600 lfpm air 32.6 31 c/w 800 lfpm air 32 29 c/w plastic q jc considerations the data listed for plastic q jc are for reference only and are not recommended for use in calculating junction temperatures. the heatflow paths in plasticencapsulated devices are complex, making the q jc measurement relative to a specific location on the package surface. tests indicate this measurement reference point is directly below the dieattach area on the bottom center of the package. furthermore, q jc tests on packages are performed in a constanttemperature bath, keeping the package surface at a constant temperature. therefore, the measurements can only be used in a similar environment. typ ambient with air flow
amd 37 mach210-7/10/12/15/20, q-12/15/20 switching waveforms notes: 1. v t = 1.5 v. 2. input pulse amplitude 0 v to 3.0 v. 3. input rise and fall times 2 nsC4 ns typical. t pd input, i/o, or feedback combinatorial output v t v t combinatorial output v t input, i/o, or feed- back registered output registered output t s t co v t t h v t clock t wh clock clock width t wl v t combinatorial output registered input (mach 2 and 4) t sir t ico v t t hir v t input register clock registered input latched output (mach 2, 3, and 4) gate gate width (mach 2, 3, and 4) t gws v t v t v t v t t ics input register to output register setup (mach 2 and 4) output register clock input register clock registered input t pdl input, i/o, or feedback latched out gate v t t hl t sl t go v t v t 14128i-9 14128i-10 14128i-11 14128i-12 14128i-13 14128i-14 14128i-15
amd mach210-7/10/12/15/20, q-12/15/20 38 switching waveforms notes: 1. v t = 1.5 v. 2. input pulse amplitude 0 v to 3.0 v. 3. input rise and fall times 2 nsC4 ns typical. latched input (mach 2 and 4) latched input and output (mach 2, 3, and 4) latched in output latch gate latched out t sll combinatorial output gate t hil t sil t igo latched in t pdll t igol t igs input latch gate v t v t v t v t v t v t 14128i-16 14128i-17
amd 39 mach210-7/10/12/15/20, q-12/15/20 switching waveforms t wich clock input register clock width (mach 2 and 4) v t t wicl v t v t t arw v t t ar asynchronous reset input, i/o, or feedback registered output clock t arr asynchronous preset registered output clock v t v t outputs output disable/enable t er t ea v oh - 0.5v v ol + 0.5v notes: 1. v t = 1.5 v. 2. input pulse amplitude 0 v to 3.0 v. 3. input rise and fall times 2 nsC4 ns typical. input, i/o, or feedback v t v t input, i/o, or feedback t apw v t t ap t apr input latch gate input latch gate width (mach 2 and 4) t wigl v t 14128i-18 14128i-19 14128i-20 14128i-21 14128i-22
amd mach210-7/10/12/15/20, q-12/15/20 40 key to switching waveforms ks000010-pal must be steady may change from h to l may change from l to h does not apply don't care, any change permitted will be steady will be changing from h to l will be changing from l to h changing, state unknown center line is high- impedance off state waveform inputs outputs switching test circuit measured specification s 1 c l r 1 r 2 output value t pd , t co closed 1.5 v t ea z ? h: open 35 pf 1.5 v z ? l: closed 300 w 390 w t er h ? z: open 5 pf h ? z: v oh C 0.5 v l ? z: closed l ? z: v ol + 0.5 v commercial 14128i-23 c l output r 1 r 2 s 1 test point 5 v *switching several outputs simultaneously should be avoided for accurate measurement.
amd 41 mach210-7/10/12/15/20, q-12/15/20 f max parameters the parameter f max is the maximum clock rate at which the device is guaranteed to operate. because the flexi- bility inherent in programmable logic devices offers a choice of clocked flip-flop designs, f max is specified for three types of synchronous designs. the first type of design is a state machine with feedback signals sent off-chip. this external feedback could go back to the device inputs, or to a second device in a multi-chip state machine. the slowest path defining the period is the sum of the clock-to-output time and the in- put setup time for the external signals (t s + t co ). the re- ciprocal, f max , is the maximum frequency with external feedback or in conjunction with an equivalent speed de- vice. this f max is designated f max external. the second type of design is a single-chip state ma- chine with internal feedback only. in this case, flip-flop inputs are defined by the device inputs and flip-flop out- puts. under these conditions, the period is limited by the internal delay from the flip-flop outputs through the inter- nal feedback and logic to the flip-flop inputs. this f max is designated f max internal. a simple internal counter is a good example of this type of design; therefore, this pa- rameter is sometimes called f cnt. the third type of design is a simple data path applica- tion. in this case, input data is presented to the flip-flop and clocked through; no feedback is employed. under these conditions, the period is limited by the sum of the data setup time and the data hold time (t s + t h ). however, a lower limit for the period of each f max type is the mini- mum clock period (t wh + t wl ). usually, this minimum clock period determines the period for the third f max , des- ignated f max no feedback. for devices with input registers, one additional f max pa- rameter is specified: f maxir . because this involves no feedback, it is calculated the same way as f max no feed- back. the minimum period will be limited either by the sum of the setup and hold times (t sir + t hir ) or the sum of the clock widths (t wicl + t wich ). the clock widths are nor- mally the limiting parameters, so that f maxir is specified as 1/(t wicl + t wich ). note that if both input and output reg- isters are use in the same path, the overall frequency will be limited by t ics . all frequencies except f max internal are calculated from other measured ac parameters. f max internal is meas- ured directly. t hir t sir logic register tt clk (second chip) sco t s f max external; 1/(t s + t co ) logic register clk f max internal (f cnt ) logic register t clk s f max no feedback; 1/(t s + t h ) or 1/(t wh + t wl ) 14128i-24 logic register clk f maxir ; 1/(t sir + t hir ) or 1/(t wicl + t wich )
amd mach210-7/10/12/15/20, q-12/15/20 42 endurance characteristics the mach families are manufactured using amd's advanced electrically erasable process. this technol- ogy uses an ee cell to replace the fuse link used in bipolar parts. as a result, the device can be erased and reprogrammed, a feature which allows 100% testing at the factory. endurance characteristics parameter symbol parameter description min units test conditions 10 years max storage temperature 20 years max operating temperature n max reprogramming cycles 100 cycles normal programming conditions t dr min pattern data retention time
amd 43 mach210-7/10/12/15/20, q-12/15/20 input/output equivalent schematics input i/o preload circuitry esd protection feedback input v cc v cc 1 k w 100 k w v cc v cc 100 k w 1 k w 14128i-25
amd mach210-7/10/12/15/20, q-12/15/20 44 power-up reset the mach devices have been designed with the capa- bility to reset during system power-up. following power- up, all flip-flops will be reset to low. the output state will depend on the logic polarity. this feature provides extra flexibility to the designer and is especially valuable in simplifying state machine initialization. a timing dia- gram and parameter table are shown below. due to the synchronous operation of the power-up reset and the wide range of ways v cc can rise to its steady state, two conditions are required to insure a valid power-up reset. these conditions are: 1. the v cc rise must be monotonic. 2. following reset, the clock input must not be driven from low to high until all applicable input and feedback setup times are met. parameter symbol parameter descriptions max unit t pr power-up reset time 10 m s t s input or feedback setup time t wl clock width low see switching characteristics t pr t wl t s 4 v v cc power registered output clock 14128i-26 power-up reset waveform
amd 45 mach210-7/10/12/15/20, q-12/15/20 using preload and observability in order to be testable, a circuit must be both controllable and observable. to achieve this, the mach devices incorporate register preload and observability. in preload mode, each flip-flop in the mach device can be loaded from the i/o pins, in order to perform functional testing of complex state machines. register preload makes it possible to run a series of tests from a known starting state, or to load illegal states and test for proper recovery. this ability to control the mach device's internal state can shorten test sequences, since it is easier to reach the state of interest. the observability function makes it possible to see the internal state of the buried registers during test by overriding each register's output enable and activating the output buffer. the values stored in output and buried registers can then be observed on the i/o pins. without this feature, a thorough functional test would be impossible for any designs with buried registers. while the implementation of the testability features is fairly straightforward, care must be taken in certain instances to insure valid testing. one case involves asynchronous reset and preset. if the mach registers drive asynchronous reset or preset lines and are preloaded in such a way that reset or preset are asserted, the reset or preset may remove the preloaded data. this is illustrated in figure 2. care should be taken when planning functional tests, so that states that will cause unexpected resets and presets are not preloaded. another case to be aware of arises in testing combinato- rial logic. when an output is configured as combinato- rial, the observability feature forces the output into registered mode. when this happens, all product terms are forced to zero, which eliminates all combinatorial data. for a straight combinatorial output, the correct value will be restored after the preload or observe function, and there will be no problem. if the function implements a combinatorial latch, however, it relies on feedback to hold the correct value, as shown in figure 3. as this value may change during the preload or observe operation, you cannot count on the data being correct after the operation. to insure valid testing in these cases, outputs that are combinatorial latches should not be tested immediately following a preload or observe sequence, but should first be restored to a known state. all mach 2 devices support both preload and observability. contact individual programming vendors in order to verify programmer support. ar figure 2. preload/reset conflict q 1 on off preload mode q 2 ar preloaded high d q q 1 d q ar preloaded high q 2 14128i-27 figure 3. combinatorial latch set reset 14128i-28
amd mach210-7/10/12/15/20, q-12/15/20 46 development systems (subject to change) for more information on the products listed below, please consult the amd fusionpld catalog. manufacturer software development systems advanced micro devices, inc. p.o. box 3453, ms 1028 sunnyvale, ca 94088-3543 (800) 222-9323 or (408) 732-2400 advanced micro devices, inc. p.o. box 3453, ms 1028 sunnyvale, ca 94088-3543 (800) 222-9323 or (408) 732-2400 advanced micro devices, inc. p.o. box 3453, ms 1028 sunnyvale, ca 94088-3543 (800) 222-9323 or (408) 732-2400 advanced micro devices, inc. p.o. box 3453, ms 1028 sunnyvale, ca 94088-3543 (800) 222-9323 or (408) 732-2400 cadence design systems 555 river oaks pkwy san jose, ca 95134 (408) 943-1234 capilano computing 960 quayside dr., suite 406 new westminster, b.c. canada v3m 6g2 (800) 444-9064 or (604) 552-6200 cina, inc. p.o. box 4872 mountain view, ca 94040 (415) 940-1723 data i/o corporation 10525 willows road n.e. p.o. box 97046 redmond, wa 98073-9746 (800) 332-8246 or (206) 881-6444 int gmbh busenstrasse 6 d-8033 martinsried, munich, germany (89) 857-6667 isdata gmbh daimlerstr. 51 d7500 karlsruhe 21 germany germany: 0721/75 10 87 u.s.: (510) 531-8553 logic modeling 19500 nw gibbs dr. p.o. box 310 beaverton, or 97075 (503) 690-6900 logical devices, inc. 692 s. military trail deerfield beach, fl 33442 (800) 331-7766 or (305) 428-6868 machxl a software ver. 2.0 composerpic tm designer (requires mach fitter) verilog, leapfrog, rapidsim simulators (models also available from logic modeling) ver. 3.3 log/ic tm software (requires mach fitter) abel tm -5 software (requires mach fitter) synario tm software macabel tm software (requires smartpart mach fitter) amd-abel software data i/o mach fitters prodeveloper/amd software prosynthesis/amd software design center/amd software smartmodel a library smartcat circuit analyzer pldsim 90 cupl tm software
amd 47 mach210-7/10/12/15/20, q-12/15/20 manufacturer test generation system acugen software, inc. 427-3 amherst st., suite 391 nashua, nh 03063 (603) 891-1995 int gmbh busenstrasse 6 d-8033 martinsried, munich, germany (87) 857-6667 development systems (subject to change) (continued) advanced micro devices is not responsible for any information relating to the products of third parties. the inclusion of such information is not a representation nor an endorsement by amd of these products. atgen tm test generation software multisim interactive simulator lasar pldcheck 90 manufacturer software development systems mentor graphics corp. 8005 s.w. boeckman rd. wilsonville, or 97070-7777 (800) 547-3000 or (503) 685-7000 microsim corp. 20 fairbanks irvine, ca 92718 (714) 770-3022 minc incorporated 6755 earl drive, suite 200 colorado springs, co 80918 (800) 755-fpga or (719) 590-1155 orcad 3175 n.w. aloclek dr. hillsboro, or 97124 (503) 690-9881 susieCcad 10000 nevada highway, suite 201 boulder city, nv 89005 (702) 293-2271 teradyne eda 321 harrison ave. boston, ma 02118 (800) 777-2432 or (617) 422-2793 viewlogic systems, inc. 293 boston post road west marlboro, ma 01752 (800) 442-4660 or (508) 480-0881 programmable logic design tools 386+ schematic design tool 386+ digital simulation tools viewpld or propld (requires prosim simulator mach fitter) viewsim simulator (models for viewsim also available from logic modeling) pldesigner tm -xl software (requires mach fitter) pldsynthesis tm (requires mach fitter) quicksim simulator (models also available from logic modeling) design center software (requires mach fitter) susie tm simulator
amd mach210-7/10/12/15/20, q-12/15/20 48 approved programmers (subject to change) for more information on the products listed below, please consult the amd fusionpld catalog. manufacturer programmer configuration advin systems, inc. 1050-l east duane ave. sunnyvale, ca 94086 (408) 243-7000 bp microsystems 100 n. post oak rd. houston, tx 77055-7237 (800) 225-2102 or (713) 688-4600 data i/o corporation 10525 willows road n.e. p.o. box 97046 redmond, wa 98073-9746 (800) 332-8246 or (206) 881-6444 logical devices inc./digelec 692 s. military trail deerfield beach, fl 33442 (800) 331-7766 or (305) 428-6868 sms north america, inc. 16522 ne 135th place redmond, wa 98052 (800) 722-4122 or sms lm grund 15 d-7988 vangen im allgau, germany 07522-5018 stag microsystems inc. 1600 wyatt dr. suite 3 santa clara, ca 95054 (408) 988-1118 or stag house martinfield, welwyn garden city herfordshire uk al7 1jt 707-332148 system general 510 s. park victoria dr. milpitas, ca 95035 (408) 263-6667 or 3f, no. 1, alley 8, lane 45 bao shing rd., shin diau taipei, taiwan 2-917-3005 bp1200 pilot u84 model 3900 turpro-1 unisite tm autosite stag quazar sprint/expert allpro tm C88 manufacturer programmer configuration corelis, inc. 12607 hidden creek way, suite h cerritos, california 70703 (310) 926-6727 advanced micro devices p.o. box 3453, ms-1028 sunnyvale, ca 94088-3453 (800) 222-9323 machpro jtag prog approved on-board programmers
amd 49 mach210-7/10/12/15/20, q-12/15/20 programmer socket adapters (subject to change) manufacturer part number edi corporation p.o. box 366 patterson, ca 95363 (209) 892-3270 emulation technology 2344 walsh ave., bldg. f santa clara, ca 95051 (408) 982-0660 logical systems corp. p.o. box 6184 syracuse, ny 13217-6184 (315) 478-0722 procon technologies, inc. 1333 lawrence expwy, suite 207 santa clara, ca 95051 (408) 246-4456 contact manufacturer contact manufacturer contact manufacturer contact manufacturer
amd mach210-7/10/12/15/20, q-12/15/20 50 physical dimensions* pl 044 44-pin plastic leaded chip carrier (measured in inches) top view seating plane .685 .695 .650 .656 pin 1 i.d. .685 .695 .650 .656 .026 .032 .050 ref .042 .056 .062 .083 .013 .021 .590 .630 .500 ref .009 .015 .165 .180 .090 .120 16C038Csq pl 044 da78 6C28C94 ae side view
amd 51 mach210-7/10/12/15/20, q-12/15/20 physical dimensions* pqt044 44-pin thin quad flat pack (measured in millimeters) 1.00 ref. 1.20 max 11 e 13 11 e 13 0.80 bsc 44 1 0.95 1.05 0.30 0.45 11.80 12.20 9.80 10.20 11.80 12.20 9.80 10.20 16-038-pqt-2_ah pqt 44 5-4-95 ae *for reference only. bsc is an ansi standard for basic space centering. trademarks copyright ? 1995 advanced micro devices, inc. all rights reserved. amd, the amd logo, mach, and pal are registered trademarks of advanced micro devices, inc. product names used in this publication are for identification purposes only and may be trademarks of their respective companies.


▲Up To Search▲   

 
Price & Availability of MACH210A-24JI

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X